

Transverse loop oscillations from 3D MHD simulations

J. Terradas, R. Soler, J. L. Ballester also in collaboration with: E. Verwichte, M. Aschwanden, E. Soubrié

¹ Departament de Física ²Institut d'Aplicacions Computacionals de Codi Comunitari, IAC³ Universitat de les Illes Balears, UIB, Spain

> Beijing 17-10-2019

J. Terradas Transverse MHD Waves in 3D loops

Observations Theory

Observations: standing transverse waves

- Oscillating loops in the solar corona:
 - Produced by flares
 - Produced by eruptions
- Fixed footpoints → Transverse standing waves
- Fast attenuation: $\tau_D/P \sim 2-5$

CORONAL SEISMOLOGY

Uchida (1970), Roberts et al. (1984)

Aschwanden et al. (1999), Nakariakov et al. (1999), Nakariakov & Ofman (2001)

Observations Theory

Theory: magnetohydrodynamics (MHD)

$$\begin{aligned} \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) &= 0, \\ \frac{\partial \rho \mathbf{v}}{\partial t} + \nabla \cdot \left(\rho \mathbf{v} \mathbf{v} + \rho \mathbf{I} - \frac{\mathbf{B} \mathbf{B}}{\mu} + \frac{\mathbf{B}^2}{2\mu} \right) &= \rho \mathbf{g}, \\ \frac{\partial \mathbf{B}}{\partial t} &= \nabla \times (\mathbf{v} \times \mathbf{B}) + \eta \nabla^2 \mathbf{B}, \\ \frac{\partial \rho}{\partial t} + \nabla \cdot (\gamma \rho \mathbf{v}) &= (\gamma - 1) (\mathbf{v} \cdot \nabla \rho - \mathcal{L}). \end{aligned}$$

 $\mathcal{L} = \mathbf{0}$ (no radiation, conduction or heating) $\eta = \mathbf{0}$ since $R_m \approx 10^{12}$ (avoid resistive regime) But still Complex Dynamics!

MHD equations solved numerically in 3D

J. Terradas Transverse MHD Waves in 3D loops

Observations Theory

Theory: basic loop model I

Equilibrium (1D)

 Cylindrically straight magnetic tube with enhanced density

Eigenmodes

- Linearized MHD equations
- Dispersion Relation Spruit (1981), Edwin & Roberts (1983), Cally (1986;2003)
- Transverse kink mode, $P = 2L/c_k$, $\sqrt{2}B_0$

$$c_k = rac{\sqrt{2} D_0}{\sqrt{\mu(
ho_i +
ho_e)}}.$$

J. Terradas

Observations Theory

Theory: basic loop model II

Equilibrium (1D)

• Same as model I but smooth density transition between tube and corona, *I/R*

Main effect: resonant damping

- Amplitude of the oscillations is damped with time, τ_D/P ≈ R/I
- Energy transfer between global motion and azimuthal oscillations

Howlleg & Yang (1988), Goossens et al. (1992), Ruderman & Roberts (2002), Goossens et al. (2002), Terradas et al. (2006) Kelvin-Helmholtz instability (KHI) at the boundary
 Terradas et al. (2008), Antolin et al. (2014;2015), Magyar et al. (2015), Magyar & Van Doorsselaere (2016)
 Terradas et al. (2018)

- Energetically important?
- Heating?

talks of Antolin, De Moortel, Srivastava, Magyar, /an Doorsselaere, Guo

・ロン ・ロン・・コン・・コン

J. Terradas

Observations Theory

Theory: basic loop model II

Equilibrium (1D)

• Same as model I but smooth density transition between tube and corona, *I/R*

Main effect: resonant damping

- Amplitude of the oscillations is damped with time, τ_D/P ≈ R/I
- Energy transfer between global motion and azimuthal oscillations

Howlleg & Yang (1988), Goossens et al. (1992), Ruderman & Roberts (2002), Goossens et al. (2002), Terradas et al. (2006)

• Kelvin-Helmholtz instability (KHI) at the boundary

Terradas et al. (2008), Antolin et al. (2014;2015), Magyar et al. (2015), Magyar & Van Doorsselaere (2016) Terradas et al. (2018)

- Energetically important?
- Heating

talks of Antolin, De Moortel, Srivastava, Magyar, /an Doorsselaere, Guo

VIU C

J. Terradas

Observations Theory

Theory: basic loop model II

Equilibrium (1D)

• Same as model I but smooth density transition between tube and corona, *I/R*

Main effect: resonant damping

- Amplitude of the oscillations is damped with time, τ_D/P ≈ R/I
- Energy transfer between global motion and azimuthal oscillations

Howlleg & Yang (1988), Goossens et al. (1992), Ruderman & Roberts (2002), Goossens et al. (2002), Terradas et al. (2006)

• Kelvin-Helmholtz instability (KHI) at the boundary

Terradas et al. (2008), Antolin et al. (2014;2015), Magyar et al. (2015), Magyar & Van Doorsselaere (2016) Terradas et al. (2018)

- Energetically important?
- Heating?

talks of Antolin, De Moortel, Srivastava, Magyar, Van Doorsselaere, Guo

・ しゃ ・ 官 ・ ・ しゃ ・ しゃ

VIU C

J. Terradas

Previous results Our 3D loop model

Previous works

3D loop model

- Simple curved magnetic field without gravity and gas pressure Van Doorsselaere et al. (2004; 2009), Terradas et al. (2006) Kink period recovered
- Gas pressure included Pascoe et al. (2009), De Moortel & Pascoe (2009), Pascoe & De Moortel (2014)
 Significant differences in the estimation of B
- Dipolar magnetic field with gravity McLaughlin & Ofman (2008), Selwa et al. (2011)
- Loop produced by emergence of magnetic flux in 3D MHD simulation Chen & Peter (2015)
 Estimation of *B* from simulations and seismology (diff. of 20%)

Previous results Our 3D loop model

Our 3D loop model: relaxation process

- Curved magnetic field
- Change of B along and across loop → variable loop cross-sec.
- Include gravity force
- MHS solution:

$$\begin{split} & -\frac{\partial \boldsymbol{p}}{\partial \boldsymbol{s}} + \rho \boldsymbol{g}_{\parallel} &= \boldsymbol{0}, \\ & -\nabla_{\perp} \left(\boldsymbol{p} + \frac{\boldsymbol{B}^2}{2\mu} \right) + \frac{\boldsymbol{B}^2}{\mu \boldsymbol{R}} \hat{\boldsymbol{k}} + \rho \boldsymbol{g}_{\perp} &= \boldsymbol{0}. \end{split}$$

Spruit (1981), Browning & Priest (1986), Ballester & Priest (1989), Hindman & Jain (2013)

Potential magnetic field:

 Based on buried magnetic charges below the photosphere Aschwanden & Sandman (2010)

Stratified density profile:

- Density stratification along and across the loop
- Use overpressure inside the tube

Previous results Our 3D loop model

Our 3D loop model: relaxation process

- Curved magnetic field
- Change of B along and across loop → variable loop cross-sec.
- Include gravity force
- MHS solution:

$$\begin{aligned} &-\frac{\partial \boldsymbol{p}}{\partial \boldsymbol{s}} + \rho \boldsymbol{g}_{\parallel} &= \boldsymbol{0}, \\ &-\nabla_{\perp} \left(\boldsymbol{p} + \frac{\boldsymbol{B}^2}{2\mu} \right) + \frac{\boldsymbol{B}^2}{\mu \boldsymbol{R}} \hat{\boldsymbol{k}} + \rho \boldsymbol{g}_{\perp} &= \boldsymbol{0}. \end{aligned}$$

Spruit (1981), Browning & Priest (1986), Ballester & Priest (1989), Hindman & Jain (2013)

Potential magnetic field:

 Based on buried magnetic charges below the photosphere Aschwanden & Sandman (2010)

Stratified density profile:

- Density stratification along and across the loop
- Use overpressure inside the tube

Previous results Our 3D loop model

Our 3D loop model: relaxation process

- Curved magnetic field
- Change of **B** along and across loop \rightarrow variable loop cross-sec.
- Include gravity force
- MHS solution:

$$-\frac{\partial \boldsymbol{\rho}}{\partial \boldsymbol{s}} + \rho \boldsymbol{g}_{\parallel} = \boldsymbol{0},$$
$$-\nabla_{\perp} \left(\boldsymbol{\rho} + \frac{\boldsymbol{B}^2}{2\mu} \right) + \frac{\boldsymbol{B}^2}{\mu \boldsymbol{R}} \hat{\boldsymbol{k}} + \rho \boldsymbol{g}_{\perp} = \boldsymbol{0}.$$

Spruit (1981), Browning & Priest (1986), Ballester & Priest (1989), Hindman & Jain (2013)

Examples: Symmetric loop Asymmetric loop Oblique loop Sigmoid type

Relaxation Excitation

Results: relaxation

Initial 3D loop model

- Gravity force included
- Loop with enhanced density and pressure
- Symmetric loop
- Potential magnetic field

Loop hotter than environment but initially not in equilibrium

Relaxation process

- Vertical motion (movies 1 and 2)
- Strong changes at the tube boundary related to KHI (movie)
- Relaxation to MHS solution due to generation of scales (phase-mixing) below grid resolution
- *B* inside loop decreases → tension decreases → loop rises → new equilibrium
 (B non potential)

Relaxation Excitation

Results: relaxation

Initial 3D loop model

- Gravity force included
- Loop with enhanced density and pressure
- Symmetric loop
- Potential magnetic field

Loop hotter than environment but initially not in equilibrium

Relaxation process

- Vertical motion (movies 1 and 2)
- Strong changes at the tube boundary related to KHI (movie)
- Relaxation to MHS solution due to generation of scales (phase-mixing) below grid resolution
- B inside loop decreases → tension decreases → loop rises → new equilibrium (B non potential)

・ ロ ト ・ 日 ト ・ 日 ト ・ 日 ト

Relaxation Excitation

Results: relaxation

Initial 3D loop model

- Gravity force included
- Loop with enhanced density and pressure
- Symmetric loop
- Potential magnetic field

Loop hotter than environment but initially not in equilibrium

Relaxation process

- Vertical motion (movies 1 and 2)
- Strong changes at the tube boundary related to KHI (movie)
- Relaxation to MHS solution due to generation of scales (phase-mixing) below grid resolution
- B inside loop decreases → tension decreases → loop rises → new equilibrium
 (B non potential)

・ ロ ト ・ 日 ト ・ 日 ト ・ 日 ト

Relaxation Excitation

Results: excitation

Loop Model

- Output from MHD relaxation
- Magnetic field not potential anymore, density and pressure variations along and across the loop

Loop in equilibrium hotter than environment

Transverse MHD waves

- Vertical excitation (movies 1 and 2)
- Similar to the relaxation process
- Ponderomotive forces specially important for vertical oscillations
- Horizontal excitation (movies 1 and 2)
- Strong dynamics affecting the whole loop, differences with respect to transverse motions in a straight tube

Relaxation Excitation

Results: excitation

Loop Model

- Output from MHD relaxation
- Magnetic field not potential anymore, density and pressure variations along and across the loop

Loop in equilibrium hotter than environment

Transverse MHD waves

- Vertical excitation (movies 1 and 2)
- Similar to the relaxation process
- Ponderomotive forces specially important for vertical oscillations
- Horizontal excitation (movies 1 and 2)
- Strong dynamics affecting the whole loop, differences with respect to transverse motions in a straight tube

Relaxation Excitation

Results: excitation

Comparison of simulations with theory

$$egin{array}{rcl} P_k &pprox & 2\int_0^L rac{1}{c_k(s)} ds, \ C_k(s) &=& rac{\sqrt{2}B(s)}{\sqrt{\mu(
ho_i(s)+
ho_e(s))}} \end{array}$$

Loop Model	P_k	P _{Kvert}	P _{Khoriz}
Symmetric	26.5	33.4	33.4
Asymmetric	28.1	31.1	32.2
Oblique	29.8	31.8	32.4

(in units of Alfvén transit times $\approx 20s$)

Maximum percentage difference of 23% in period

J. Terradas Transverse MHD Waves in 3D loops

• Perform parametric study of dependence of period:

- **O** Dependence with plasma- β
- 2 Stronger changes of B along loop
- Use non-potential magnetic field, more realistic
- COMPARE MHD SIMULATIONS WITH REAL REPORTED EVENT

J. Terradas Transverse MHD Waves in 3D loops

Future work

Introduction 3D loop models Results Future work

Study with MHD simulations a real reported event

• Verwichte et al. (2013)

・ロト ・雪 ・ ・ ヨ ・ ・ ヨ ・

BUILD 3D EQUILIBRIUM OF AR AND SIMULATE TRANSVERSE WAVES

J. Terradas