

## "DESIGN OF SATELLITE LINKS FOR Ka-BAND NETWORK IN NEPAL"



Presented By Amrita Khakurel Nepal

#### OBJECTIVE OF THE WORK

- •To design Ka-band network links by logically selecting technologies and optimizing scarce resources.
- •To depict the simulation studies for linkages between Nepalese site-specific attenuation, resources, geographic plus system attributes and quality parameters.

#### De-merit of ka-band

More susceptible to fading including rain attenuation than other bands like C and Ku.

### RAIN ATTENUATION CALCULATION-



# STEPS UTILIZED FOR MATLAB PROGRAM GENERATION

- Step 1:Determine the rain height based on latitude.
- $\odot$  Step 2: Compute the slant-path length,  $L_{s.}$
- Step 3: Calculate the horizontal projection, LG, of the slant-path length.
- Step 4: Obtain the rainfall rate, R0.01, exceeded for 0.01% of an average year.
- Step 5: Obtain the specific attenuation.

- Step 6: Calculate horizontal adjustment factor and Calculate adjusted path length
- Step 7: Calculate the vertical adjustment factor for 0.01% of the time.
- Step 8:Calulate Effective path length
- Step 9: Calculate rain attenuation at 0.01% of time.



| S.N. | Site Name           | Rain Attenuation(in dB) | Rain Attenuation(in dB) for |
|------|---------------------|-------------------------|-----------------------------|
|      |                     | for Uplink              | Downlink                    |
|      |                     |                         |                             |
| 1    | NCIT(Lalitour)      | 42.13 dB (p=0.01)       | 33.25 dB(p=0.01)            |
|      | NCIT(Lalitpur)      | (7.2708 dB for 0.5)     | (5.5065 dB for 0.5)         |
| 2    | Pokhara University( | 45.44 dB (p=0.01)       | 35.56 dB(p=0.01)            |
|      | Pokhara)            | (7.8678dB for 0.5)      | (5.9048 dB for 0.5)         |
|      |                     |                         |                             |
| 3    | Transportable Site  | -                       | -                           |

Note: Basis of ITU new grid based model

| 1 | S.N. | Site Name       | Latitude  | Longitude | Rain<br>(mm/hr<br>0.01% | rate<br>at |
|---|------|-----------------|-----------|-----------|-------------------------|------------|
|   | 1    | NCIT( Lalitpur) | 27.6714°  | 85.3387 ° | 46.4764                 |            |
| / | 2    | Pokhara         | 28.1453 ° | 84.0838 ° | 52.4587                 |            |
|   |      | University(     |           |           |                         |            |
|   |      | Pokhara)        |           |           |                         | 0.0.04     |
|   | 3    | Transportable   | -         | -         | _                       |            |
|   |      | Site            |           | 7         |                         |            |

- The rain attenuation varies from location to location depending on the rain rate and other parameters.
- Providing for the large attenuation in satellite links like in case of Pokhara (uplink) can lead to over-design and higher cost.
- Hence accommodation in our case will be made by using a suitable fade mitigation techniques among Uplink Power Control (UPC), Adaptive Coding and Modulation(ACM) and site diversity or any of their combination.

# RAIN EXCEEDENCE VS ATTENUATION AT POKHARA UNIVERSITY

|                    |                  | Pokhara University(Pokhara)        |                                      |  |
|--------------------|------------------|------------------------------------|--------------------------------------|--|
| Rain<br>Exceedence | Availabilit<br>y | Attenuation(Uplink<br>Freq.=29.75) | Attenuation(Downlink<br>Freq.=19.95) |  |
| 0.01               | 99.99            | 45.44                              | 35.56                                |  |
| 0.02               | 99.98            | 35.9042                            | 27.9157                              |  |
| 0.03               | 99.97            | 31.0051                            | 23.9995                              |  |
| 0.04               | 99.96            | 27.7493                            | 21.4116                              |  |
| 0.05               | 99.95            | 25.3598                            | 19.52                                |  |
| 0.06               | 99.94            | 23.4989                            | 18.0514                              |  |
| 0.07               | 99.93            | 21.9908                            | 16.8644                              |  |
| 0.08               | 99.92            | 20.7333                            | 15.8767                              |  |
| 0.09               | 99.91            | 19.6618                            | 15.0367                              |  |
| 0.1                | 99.9             | 18.7333                            | 14.3101                              |  |

Rain exceedence & Availability -%, Attenuation-dB



# RAIN EXCEEDENCE VS ATTENUATION AT NCIT

|                    |                  | NCIT(Lalitpur)                  |                                      |  |
|--------------------|------------------|---------------------------------|--------------------------------------|--|
| Rain<br>Exceedence | Availabilit<br>y | Attenuation(Uplink Freq.=29.75) | Attenuation(Downlink<br>Freq.=19.95) |  |
| 0.01               | 99.99            | 42.13                           | 33.25                                |  |
| 0.02               | 99.98            | 33.4321                         | 26.2022                              |  |
| 0.03               | 99.97            | 28.852                          | 22.5154                              |  |
| 0.04               | 99.96            | 25.8104                         | 20.0802                              |  |
| 0.05               | 99.95            | 23.5791                         | 18.3008                              |  |
| 0.06               | 99.94            | 21.8419                         | 16.9197                              |  |
| 0.07               | 99.93            | 20.4346                         | 15.8036                              |  |
| 0.08               | 99.92            | 19.2613                         | 14.875                               |  |
| 0.09               | 99.91            | 18.2617                         | 14.0854                              |  |
| 0.1                | 99.9             | 17.3956                         | 13.4024                              |  |

Rain exceedence & Availability -%, Attenuation-dB



## RAINFALL INTENSITY VS ATTENUATION AT DIFFERENT PROBABILITIES FOR BOTH UPLINK AND DOWNLINK

|                              | Uplink Frequency                          |                                          | Downlink l                                  | Frequency                                  |
|------------------------------|-------------------------------------------|------------------------------------------|---------------------------------------------|--------------------------------------------|
| Rainfall<br>Intensity(mm/hr) | Uplink Rain<br>Attenuation(dB)/p<br>=0.01 | Uplink Rain<br>Attenuation(dB)/<br>p=0.5 | Downlink Rain<br>Attenuation(dB)/p<br>=0.01 | Downlink Rain<br>Attenuation(dB)/<br>p=0.5 |
| 10                           | 11.6577                                   | 1.6082                                   | 9.898                                       | 1.3311                                     |
| 20                           | 19.9523                                   | 3.0256                                   | 17.2937                                     | 2.5657                                     |
| 30                           | 28.1783                                   | 4.5407                                   | 23.7296                                     | 3.7221                                     |
| 40                           | 35.8801                                   | 6.033                                    | 29.5575                                     | 4.819                                      |
| 50                           | 43.1877                                   | 7.5026                                   | 34.9455                                     | 5.8679                                     |
| 60                           | 50.1793                                   | 8.9505                                   | 39.9922                                     | 6.8767                                     |
| 70                           | 56.9073                                   | 10.3779                                  | 44.7623                                     | 7.8511                                     |
| 80                           | 63.4098                                   | 11.7861                                  | 49.3012                                     | 8.7955                                     |
| 90                           | 69.7152                                   | 13.1762                                  | 53.6427                                     | 9.7133                                     |
| 100                          | 75.8459                                   | 14.5491                                  | 57.8125                                     | 10.6072                                    |
|                              |                                           |                                          |                                             |                                            |



## PATH ELEVATION VS ATTENUATION AT POKHARA STATION ON 29.75 GHZ

| Path Elevation (Degrees) | Attenuation(dB)- Uplink |
|--------------------------|-------------------------|
| 10°                      | 51.0398                 |
| 20°                      | 21.4313                 |
| 30°                      | 11.6447                 |
| 40°                      | 9.2456                  |
| 50°                      | 7.9539                  |
| 60°                      | 7.2004                  |
| 70°                      | 6.7579                  |
| 80°                      | 6.5231                  |
| 90°                      | 6.4494                  |
|                          |                         |



## TILT ANGLE VS ATTENUATION FOR POKHARA AND NCIT AT RESPECTIVE ELEVATION ANGLES

| Tilt Angle (Degrees) | Attenuation(dB) for Uplink | Attenuation(dB) for Downlink |
|----------------------|----------------------------|------------------------------|
| -90°                 | 7.5558                     | 5.6941                       |
| -45°                 | 7.8678                     | 5.9048                       |
| 0°                   | 8.1717                     | 6.1087                       |
| 45°                  | 7.8678                     | 5.9048                       |
| 90°                  | 7.5558                     | 5.6941                       |



#### HEIGHT ABOVE SEA LEVEL VS ATTENUATION





#### LINK BUDGET DESIGN

Tools & software utilized:SATMASTER Pro

Satellite Considered :Spacecom's AMOS-4

#### **Works Done**

 Link-Budget Attempted for two sites - Lalitpur and Pokhara of Nepal

#### **General Specifications**

- Service areas
  - Ku-band beams:
     two shaped steerable beams covering Russia
     and India with optional steering to: Southeast
     Asia, the Middle East, Central Asia, India,
     South Africa and Central East Europe
  - Ka-band beam:
     one shaped steerable beam covering the Middle
     East. Optional steering to: Russia, India, China,
     Central Asia, Southeast Asia, and South Africa

#### KA EIRP OVER NEPAL



### OUTBOUND LINK DESIGN

| L. | ŀ. |
|----|----|
|    | т  |
|    | н  |

| Service Name           | Satellite Education<br>Network |
|------------------------|--------------------------------|
| Coverage               | Nepal                          |
| Uplink Earth Station   | Pokhara                        |
| Downlink Earth Station | NCIT                           |
| Satellite Name         | AMOS-4                         |
| Modcod                 | DVB-S2 4-PSK (1/2)             |

### LINK INPUT PARAMETERS

|                                        | Up        | Down     | Unit    |
|----------------------------------------|-----------|----------|---------|
| Link Input Parameters                  | 1 - 3-1   |          |         |
| Site Latitude                          | 28.1453 N | 27.6714N | degrees |
| Site Longitude                         | 84.0838E  | 85.3387E | degrees |
| Site Altitude                          | 1.6555    | 1.6      | km      |
| Polarization                           | Circular  | Circular |         |
| Rain-zone or mm/hr                     | 52.5      | 46.5     |         |
| Availability(average year)             | 99.5      | 99.5     | %       |
| Antenna Aperture                       | 1.8       | 1.8      | meters  |
| Antenna Efficiency                     | 64        | 64       | %       |
| CouplingLoss                           | 0.1       | 0.1      | dB      |
| Antenna Mispointing Loss               | 0.5       | 0.5      | dB      |
| Other path losses                      | 0.1       | 0.1      | dB      |
| LNB Noise figure (dB)or temperature(K) |           | 1.6      | dB      |
| Uplink Station HPA output back-off     | 0         |          | dB      |
| Uplink power control                   | 6.13      |          | dB      |
| Number of Carriers/HPA                 | 1         |          |         |

## SATELLITE I/P PARAMETERS

| Satellite Input Parameters | Value  | Unit    |
|----------------------------|--------|---------|
| Satellite longitude        | 65E    | degrees |
| Transponder type           | TWTA   |         |
| G/T Reference              | 0      | dB/K    |
| SFD Reference              | -81    | dBW/m2  |
| Receive G/T                | 8.5    | dB/K    |
| Attenuator pad (gain step) | 0      | dB      |
| Effective SFD              | -89.50 | dBW/m2  |
| Satellite ALC              | 0      | dB      |
| EIRP (saturation)          | 51     | dBW     |
| Transponder bandwidth      | 216    | MHz     |

## MAJOR RESULTS

| Description      | Clear-Sky    | Rain -Uplink | Rain-Downlink |
|------------------|--------------|--------------|---------------|
| Excess Margin    | 3.71dB       | 0dB          | 0 dB          |
| HPA Power        | 3.5662 Watt  |              |               |
| Availability     | 99.5%        |              |               |
| Link Efficiency  | 0.654 bps/Hz |              |               |
| Power Equivalent | 6.1133 MHz   |              |               |
| Bandwidth        |              |              |               |

 Utilized QPSK ½ but the system can run upto Modcod of QPSK 4/5 , derived from Es/No=>(1+3.71)=4.71 in clear-sky condition.

### INBOUND LINK DESIGN

#### **WORST CASE**

| Description      | Clear-Sky     | Rain - Uplink | Rain-Downlink |
|------------------|---------------|---------------|---------------|
| Excess Margin    | 7.03dB        | -21.81dB      | -5.49dB       |
| HPA Power        | 190.8244 Watt |               |               |
| Availability     | 99.98%        |               |               |
| Link Efficiency  | 0.019 bps/Hz  |               |               |
| Power Equivalent | 215.9 MHz     |               |               |
| Bandwidth        |               |               |               |

### OPTIMIZED RESULT



| Description      | Clear-Sky    | Rain -Uplink | Rain-Downlink |
|------------------|--------------|--------------|---------------|
| Excess Margin    | 4.22 dB      | 0dB          | 0 dB          |
| HPA Power        | 3.0307 Watt  |              |               |
| Availability     | 99.5%        |              |               |
| Link Efficiency  | 0.468 bps/Hz |              |               |
| Power Equivalent | 8.5549 MHz   |              |               |
| Bandwidth        |              |              |               |

# FURTHER OPTIMIZATION (FROM 4-PSK 1/2 TO 4-PSK 1/3)



| Description      | Clear-Sky    | Rain -Uplink | Rain-Downlink |
|------------------|--------------|--------------|---------------|
| Excess Margin    | 4.37 dB      | 0.01 dB      | 0 dB          |
| HPA Power        | 8.5549 Watt  |              |               |
| Availability     | 99.5%        |              |               |
| Link Efficiency  | 0.531 bps/Hz |              |               |
| Power Equivalent | 7.5309 MHz   |              |               |
| Bandwidth        |              |              |               |

 Maximum Modcod that can be used is (-1.24 + 4.22) = 2.98, giving QPSK 3/5 as Maximum Modcod that can be used for clear-sky condition for Inbound.

## DUAL-FADE LINK DESIGN(QPSK 1/4)

| Description      | Clear-Sky    | Rain-Uplink | Rain-Downlink |
|------------------|--------------|-------------|---------------|
| Excess Margin    | 5.33dB       | 0 dB        | 0dB           |
| HPA Power        | 8.1026Watt   |             |               |
| Availability     | 99.5%        |             |               |
| Link Efficiency  | 0.407 bps/Hz |             |               |
| Power Equivalent | 9.816 MHz    |             |               |
| Bandwidth        |              |             |               |

#### LINK DESIGN FOR TRANSPORTABLE SITE



Worst rainfall in the duration of May9,2014 - Aug 3, 2016 in Pokhara

- In case of Pokhara, the highest rainfall is seen in July 16, 2015 as 224 mm for 24 hours.
- The data logger is seen to collect data every three hours.
- Empirical reduction formula. The equation is given as:
- Pt = P24  $(t/24)^1/ 3$
- where, Pt is the required rainfall depth (mm) in t-hr, P24 is the daily rainfall (mm) and t is the rainfall duration for which the rainfall intensity is to be calculated.
- Thus for transportable site this worst case condition of 77.65 mm/hr for pocket-rainfall zone Pokhara is considered.

• Random transportable site at (latitude, longitude, altitude) = (29N,84E,5.282km) is selected.

• 99.5 % available Link is balanced with UPC=8.55 and QPSK-3/4 modcod with the following results:

| Description      | Clear-Sky    | Rain -Uplink | Rain-Downlink |
|------------------|--------------|--------------|---------------|
| Excess Margin    | 1.44 dB      | 0 dB         | 0dB           |
| HPA Power        | 4.952 Watt   |              |               |
| Availability     | 99.5%        |              |               |
| Link Efficiency  | 0.826 bps/Hz |              |               |
| Power Equivalent | 4.843 MHz    |              |               |
| Bandwidth        |              |              |               |

#### **Link Design for Transportable site**

#### CONCLUSION

- Contribution was made utilizing attenuation model to come up with the linkages between attenuation, resources, geographic plus system attributes and quality parameters.
- A link-budget analysis for selected sites with significant attenuation was designed to derive a fairly comfortable margin of approx. 3.71-4.22dB in uplink and downlink scenarios for unexpected sources of losses with 99.5% reliability.
- Reasonable excess Margin of 5.33 dB in case of dual-fade has been derived.

- For Outbound, link is optimized to work in QPSK ½ in rain fade condition and can utilize higher Modcod during clear-sky with HPA Power 3.56 Watts, PEB 6.11 MHz and Spectral Efficiency of 0.654 bps/Hz.
- Likewise, Inbound link is designed to utilize QPSK 1/3 during rain-fade and can go upto higher modulation during clear sky condition. HPA power used is 2.66 Watts, PEB is 7.53MHz and Spectral Efficiency is 0.531bps/Hz.PEB in case of dual-fade link design is higher with the use of 9.8 MHz.
- Hence, a ka band satellite network link design to cover areas of both urbane and remote with acceptable availability was derived for high-speed collaboration and resource sharing.

#### LIMITATIONS AND FUTURE WORKS

- This work does not deal with Link Optimization by varying the Antenna Size and its simulation.
- Antenna size is kept fixed. Uses ku-band antenna.FMT- Site diversity is not utilized.
- It does not study impact of other atmospheric fading due to cloud and fog which also affects ka-band frequencies.
- Only design for simple three-site network is demonstrated and described for simplicity.
- More intensive simulations like MODCOD vs Antenna size and fog /cloud attenuation simulation can be depicted.
- More advanced network for whole of Nepal can be designed leading to depiction of more work in bandwidth allocation system.

40

# Thank You!