

Attitude Determination System of Small Satellite

Satellite Research Centre

Jiun Wei Chia, M. Sheral Crescent Tissera and Kay-Soon Low School of EEE, Nanyang Technological University, Singapore

24th October 2016

1st Space Science School, Geo-informatics and Space Technology Development Agency (GISTDA), Chonburi, Thailand.

SaRC - Satellite Research Centre

To be a world class centre for advanced research and training in innovative space technologies for small satellite system

In orbit since 20 April 2011. It captures more than 9000 high resolution images.

Background

 The industry of miniature satellite has been growing. SpaceWorks' market assessment indicates around 180 nano/microsatellites requiring a launch in year 2020*.

Nano-satellite	Micro-satellite	Satel	lite
THE S NARM COMETH Small, I ght and cheap satellite How th y measure up to their	is could transform Earth ob larger breth in:	servation.	
DOVE Operator: Planet Labs	SKYSAT Skybox Imaging	LANDSAT 8 NASA	WORLDVIEW-3 DigitalGlobe
DOVE Operator: Planet Labs Number of satellites*: 32	SKYSAT Skybox Imaging 24	LANDSAT 8 NASA N/A	WORLDVIEW-3 DigitalGlobe N/A
DOVE Operator: Planet Labs Number of satellites*: 32 Weight: ~5 kg Instruments: Optical and near-infrared spectral bands	SKYSAT Skybox Imaging 24 ~100 kg Optical and near- infrared spectral bands	LANDSAT 8 NASA N/A 2.071 kg ¹ Multiple spectral bands	WORLDVIEW-3 DigitalGlobe N/A 2,800 kg Multiple spectral bands

*D. DePasquale and J. Bradford, "Nano/Microsatellite Market Assessment," SpaceWorks2013.

Background

- The nano-satellites industry has changed from research purposes to application focused
 - Remote sensing
 - Automated Identification System (AIS) for ship tracking
 - Automatic dependent surveillance broadcast (ADS-B) for aircraft position estimation
 - Intersatellite Communication
- Industry and university that constantly building nano-satellites
 - University of Toronto Institute for Aerospace Studies (UTIAS)
 - NTU Satellite Research Centre (SaRC)
 - Planet Labs
 - Spire
 - Stensat Group
 - Satellogic

Attitude determination and control system (ADCS)

- Most applications require target tracking, precise attitude determination is important
- Nano-satellite's ADCS
 - MEMS Inertial Measurement Unit with gyroscope and magnetometer
 - Sun Sensors
 - Reaction Wheel
 - Magnetic torquer

Attitude Determination System (ADS)

ADS: Sun Sensor

- In-house designed Analog Sun Sensor
- Consists of:
 - 2-dimensional position sensitive detector (PSD)
 - Mechanical cover

ADS: Sun Sensor

	60FOV	120FOV Z-
RMS (°)	0.36	0.82
Mean (°)	0.29	0.69
Std (°)	0.23	0.45

ADS: Inertial Measurement Unit

- Microelectromechanical systems (MEMS) based attitude determination system (ADS) is typically used for nano-satellites due to the limitation of
 - Size
 - Weight
 - Low computational power
- Low accuracy (noisy)

ADS: Gyroscope

- Kalman filter to reduce the gyroscope noise
- MEMS gyroscope can be modelled as:

Kalman filter(KF) experimental results

Gyroscope noise reduced by 20.92%

Kalman filter(KF) experimental results

• KF gyroscope angular rate in all axes has lower RMS error at any given rotation rate

Observer free sun tracking

- VELOX sun tracking used an observer free quaternion error correction method together with Model Predictive Control.
- The general linearized control law for the observer free sun tracking algorithm is:

Highly susceptible to gyroscope noise

Observer free sun tracking: experiment

 RMS steady state tracking error without KF is 1.672° whereas with KF is 0.622°

Spacecraft simulator

VELOX-II ADCS In-orbit result

Future Work

- Digital sun sensor development
 - Complementary metal-ocide-semiconductor (CMOS)
- In-orbit gyroscope and magnetometer calibration
 - Thermal variation
 - On-board electronics time-varying bias
 - Mechanical mis-alignment
 - Gyro bias drift (gyroscope)
 - Coupling effect of magnetic torquer (magnetometer)

