

1st APSCO & ISSI-BJ Space Science School

Satellite System Engineering

-- Budget & Margin

Prof Dr Shufan Wu
Chinese Academy of Science (CAS)
Shanghai Engineering Centre for Microsatellite
Haike Road 99, Shanghai, China
Email: shufan.wu@mail.sim.ac.cn

2016/10/24, Thailand

Budget & Margin

Main System Budgets

Overall System synthesis is based on budgets:

- Mass budget
- Delta-V and Propellant budget
- Power/Energy budget
- Data budget
- Link budget
- Pointing error budget
- Cost

2016/10/24, Thailand

Budget & Margin

Mass Budget

Main purposes of mass budget:

- Ensure mission is launchable with a given margin
- Provide reference total mass for subsystem analyses

Element 1		ent 1	Ocean Earth Watch						
				Target Space	ecraft Ma	ss at Laun	ch 950.	00 kg	
				Below Mass Target by: 920.00 kg					
	Input	Input		Without Margin	Margin		Total	% of Total	
	Mass	Margin	Dry mass contributions	-	%	kg	kg		
EL			Structure	0.00 kg	-	-	-	-	
L			Thermal Control	0.00 kg	-	-	-	-	
EL			Mechanisms	0.00 kg	-	-			
EL			Communications	0.00 kg	-	-	-	-	
EL			Data Handling	0.00 kg	-	-	-	-	
EL			AOCS	0.00 kg	-	-	-	-	
EL			Propulsion	0.00 kg	-	-	-	-	
EL			Power	0.00 kg	-	-	-	-	
)I			Harness	0.00 kg	0.00	0.00	0.00	0.00	
EL			Instruments	0.00 kg	0.00	0.00	0.00	0.00	
			Total Dry(excl.adapter)	0.00			0.00 kg		
5			System margin (excl.adapter)		20.00 %		0.00 kg		
			Total Dry with margin (excl.adap	ter)			0.0	00 kg	
			Other contributions						
			Wet mass contributions						
ΞL			Propellant	0.00 kg		2.0		-	
			Adapter mass (including sep. mech.), kg	30.00 kg	0.00	0.00	30.00	1.00	
			Total wet mass (excl.adapter)				0.0	00 kg	
Launch mass (including adapter)								30.00 kg	

Concurrent Design of Space Systems Course Budget & Margin

2

Mass Budget (cont.)

- A bottom-up exercise from unit to subsystem to system
- Subsystem breakdown is arbitrary but a convention needs to be fixed
- Requires a preliminary design; however a starting point needs to be given (first guess)
- Margins shall be explicit at all levels
- Launcher adapter mass shall be taken into account as it subtracts from the available launcher performance

2016/10/24, Thailand

Budget & Margin

Need for Margins

- Mass is usually a driving parameter for all space missions. It can make the mission unfeasible
- Just about everything else can be somehow negotiated (except at times cost and in rarer cases launch date)
- During the development of a project, the value of every early mass estimation tends to increase due to several reasons:
 - Change of requirements
 - Unforeseen design issues (e.g. under-evaluation of environmental factors, etc.)
 - Poor knowledge of technology performance (low TRL)
 - Optimism (need to "sell" the mission)
- To cope with this critical uncertainty, margins are introduced

2016/10/24, Thailand Budget & Margin

Margin Approach

- In theory, margins could be defined statistically by assessing the possible range of variations of all the mass drivers (e.g. delta-V, radiation dose, disturbance torque, etc.) and running a Montecarlo analysis to find the overall ΔM corresponding to all possible combinations of variations
- This requires the availability of a reliable system model and it is very complex unless only few drivers can be identified. Therefore this approach is implemented only in special cases (e.g. launchers, landers, etc.)
- In practice, a more simplistic approach is followed using a cascade of coefficients σ so that: M* = M+ σM

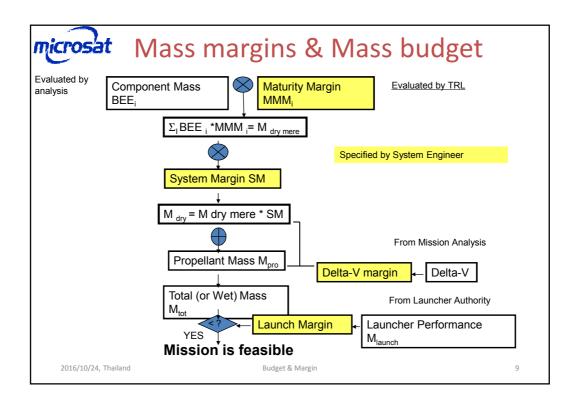
2016/10/24, Thailand

Budget & Margin

microsat

Mass Margin Definition (CDF rules)

- · A cascade of margin from basic units upwards
- Design units/subsystems always for the relevant worst (load) cases
- Include design margin, safety factors, redundancies, at unit/subsystem level
- Add technology margin at unit level (based on TRL):
 - 5% mass margin at subsystem level must be considered if the related technology is well known and already space proven (TRL8 or 9)
 - 10% mass margin at subsystem level must be considered if the related technology is not well known and already space proven (6<TRL<7)
 - 20% mass margin at (sub)system level is strongly recommended in general and is compulsory if a new technology is necessary (TRL≤5).
- Uncertainties and possible changes in requirements: 20% margin at system level
- Propellant to be computed against the S/C dry mass, including system margin
- Always size tanks taking into account a min ullage (95% filling factor max)
- Launcher margin shall be considered. Final wet mass of the spacecraft must be smaller or equal to the launcher capabilities (5-10% margin is recommended)


2016/10/24, Thailand Budget & Margin

Other Margins Definition (CDF Rules)

- ΔV margin, at least 5% (higher if gravity losses are not accounted for)
- Data processing margin
 - 50% for mass memory
 - 100% for computing power
- Communications, 3 dB in the link budget
- Temperatures, \pm 10 deg
- Power, 20% in the power budget
- Consumables (AOCS propellant, battery, to be sized for mission lifetime + extension)
- Propellant residuals (unusable): 3% of propellant mass

2016/10/24, Thailand

Budget & Margin

More on margins

- · Margins are the property of the system engineer
- Always have robust margins but be careful to oversize your system.
- · Lot of pressure to reduce margin to have more payload
- Margins evolve with mission phases a typical evolution is:
 - 20% at SRR
 - 15 % at PDR
 - 10% at CDR
 - 5% or less at FAR

2016/10/24, Thailand

Budget & Margin

Harness

11

- Harness mass calculation is difficult in phase 0
- Bottom-up approach virtually impossible
- A statistical model based on previous spacecraft data is used in CDF: Interpolation of harness mass versus S/C mass and dimensions
- Alternative: count number of boxes and connections from electrical architecture
- 5% of total mass a starting point

2016/10/24, Thailand Budget & Margin