

Development of a physical mock-up of an electron spectrometer for studying fine aurora structures

Shuvalov S.D., Shestakov A.Yu., Moiseenko D.A., Zhuravlev R.N., Ermakov V.N.

Science supervisor: Vaisberg O.L.

20 October 2016

The study is supported by RFBR grant 16-32-00746

Russian space research institute RAS

Scientific goals of the experiment

The scale of these structures may be < 1 km, so measurements with high temporal and spatial resolution are required: with the speed of satellite of 7.9 km/s measurements with > 10 Hz frequency are need. The main goal of the experiment is studying bright discrete arcs and rays of aurora. These fine structures are formed by interaction of electron beams with energies 1-10 KeV with the upper atmosphere.

Goals of the instrument and its expected characteristics

Expected characteristics of the instrument

Parameter	Value
Energy interval	1 KeV – 10 KeV
Energy resolution	10%
Angle of view	≈ 5° x 5°
Mass	≤ 2,5 kg
Energy consumption	≤ 3 Вт
Informativity	10 Kbit/s (average) 30 Kbit/s (peak)

Instrument must conduct measurements:

Simultaneous electron energy spectra within the range of 1-10 KeV with no less than 10 Hz frequency

Instrument will be probably installed on "Trabant" microsatellite

Main elements of constructive and maintenance systems of «Trabant» microsatellite

Scientific goals of "Trabant" experiment:

- 1. Conduction of long-term continuous measurements of complex spectra:
 - 1.1 electromagnetic ELF-ULF-VLF-HF natural and anthropogenic radiation
 - 1.2 Density fluctuations of thermal plasma in ELF-ULF-VLF ranges;
- 2. Development of forecasting methods of the ionosphere and the Earth's upper atmosphere on the basis of long-term monitoring.

Persecutors: BD-3 instrument for Vega spacecraft

Flat electrostatic mirror is used for separation of particles with different energies. The mirror is inclined to 45° to the initial particles' velocity direction.

Persecutors: CAMERA-E instrument for RESONANSE project

- 1 collimator
- 2 electrostatic mirror
- 3 system of diaphragms
- 4 electrostatic analyzer
- 5 detector plate
- 6 correcting electrode

Model of electron optics unit of the instrument

- 1 collimator with 2 entrance diaphragms
- 2 electrode 1 (~-500 Volts)
- 3 electrode 2 (~-7500 Volts)
- 4 grid with zero potential
- 5 detector plate

Parameter	Value
Particles' sort	electrons
Energy	1-10 KeV; step 500 eV
Initial velocity direction	112°-115° to vertical direction (uniform)

Technical drawings

Overall view and installation in vacuum chamber

Light trap development

Mirror-reflection modelling

- The task is to choose parameters of structure to absorb UV photons and sputtered ions
- Initial angles of photons' velocities are 112°-180° to vertical direction
- There must be at least **3 reflections** before particle escapes from the structure

Summary

- We are developing a **relatively small** instrument for electron spectra registration
- Energy range is **1-10 KeV**
- Sensivity allows registration of energy spectra with 10 Hz frequency with electron flux ~10⁶ cm⁻²s⁻¹
- A computer model of an electron optics unit of the instrument was made and proved energy resolution ΔE/E ~ 10%
- A mock-up of the instrument is nearly developed and its manufacturing is begun

Thank you for your attention!

The study is supported by RFBR grant 16-32-00746