

Design, Integration and Testing Small Satellites

Muhammad Rizwan Mughal Institute of Space Technology Islamabad, Pakistan

- □Small Satellite Classification
- □AraMiS architecture:
- □Concept of Tiles and Modules
- □Smart Harness:
 - Module Life cycle
 - □ Spacecraft configurations
- □ Conclusion

Typical Classification of Small Satellites

	Mass (kg)	Altitude (km) Orb period	Project lifetime	Total Cost (M\$)	Cost/Mass (k\$/kg)
Mini	100 - 500	1000 – 5000 (2 – 3 hrs)	4 - 7 yrs	10-150	200
Micro	10 – 100	500 – 2000 (1.6 - 2 hrs)	2 - 5 yrs	1-30	400
Nano	1 - 10	300 – 800 (1.4 – 1.7 hrs)	2 - 3 yrs	0.1-10	800
Pico	0.1 – 1	200 - 400 (1.4 – 1.5 hrs)	1 - 2 yrs	0.05-2	1600
Femto	< 100 g	200 – 400 (1.4 – 1.5 hrs)	1 yrs	< 0.05	3200

CubeSat Standard

ARAMIS Approach

- ARAMIS (Modular Architecture for Satellites) is an innovative modular architecture for flexible and more demanding satellite configurations.
- Panel bodies or tiles
 - Different size and technology
 - Power and data standardized interfaces
- Modularity
 - Mechanical, electronic and testing level
- Low cost
 - Design, qualification and test cost shared among multiple modules
- The size of the satellite varies based on payload demands

Hardware Architecture of Tile (I)

□ Single-size Al: 16.5×16.5 cm² tile, a 1.6mm thick monolithic Aluminum structure, for cheaper and smaller configurations

- □ CubeSat standard: (8.25 x 9.8cm²) tile, with all electronic components integrated and compatible with CubeSat dimensions.
- □All structure on PCB only
- □All the subsystems integrated on each tile

Hardware Architecture of Tile (2)

Hardware Architecture of Tile (3)

□ Honeycomb Structure: 16.5x33 cm² tile, with 10mm thick honeycomb structure for more rigid and larger structures

Smart Harness: Block Diagram

AraMiS → "AraModules" and "Tiles"

An AraModule is a small P&P subsystem

AraMiS → "AraModules" and "Tiles"

AraModule: Electrical Interface

AraMiS P&P - <u>St</u>ep I

AraModules

a) select processorfrom a libraryb) add to "virtual

board"

PROC

AraMiS P&P - Step 2

a) select powersupply from a libraryb) add to "virtualboard"

AraMiS P&P - Step 3

- a) select AOCS sensors and actuators...
- b) add to "virtual board"

AraMiS P&P - Step 4

select and add:

- a) RF module(s)
- b) antenna(s)
- c) Other sensors
- d) On-board modules
- e) Payload support
- f) Any other...

AraMiS P&P - Step 5 (proto)

a) takecorrespondingproto modulesb) assemble toproto system

School Thailand

Smart Harness: Spacecraft Configurations

- □ Design the new subsystems either on single, double or quadruple module configuration.
- ☐ Test the subsystems on ground using development board.
- □ Integrate each physical module in a physical module based satellite configuration.
- □ Embed the logical modules in the main tile for a Satellite on demand configuration.
- ☐ The Satellite on demand configuration can be altered very easily for Reusable design configuration

Physical Module Based Configuration

- □ Develop standard tiles hosting multiple connectors
- ☐ Physical daughter boards connected to the tile via pluggable connectors
- ☐ The subsystem module only plugged if mission needs it.
- High level of design flexibility, testability and upgradability
- ☐ Testing of modules, tiles and whole satellite is needed
- ☐ For teaching/research purposes

Satellite on demand Configuration

- □ Already tested modules integrated inside the PCB.
- □ Reusability of physical subsystem modules
- ☐ Permanent configuration
- ☐ Testing of modules: not required
- ☐ Testing of tiles and mission is required only
- CubeSat standard tile built using this approach

Satellite on demand Configuration - Aramis CI

AraMiS CubeSats - Aramis C1

- Optimised spacecraft configuration based on mission requirements
- □ Reuse of the satellite on demand configuration
- ☐ Minor addition or removal of subsystems on customer demands
- □ Follows the Cheaper-Faster-Better philosophy
- ☐ Module and tile testing: not required
- □ Only mission testing is needed for this configuration

- □The design technique achieves simplefaster-better design philosophy
- The modularity, flexibility and testability has been achieved at mechanical, electrical, protocol and testing level.
- Multiple spacecraft configurations possible with very short development times.

Thank You !!!