

MODELING THE MAGNETOSPHERE USING RADIAL BASIS FUNCTIONS

Varvara Andreeva, Nikolai Tsyganenko

Saint Petersburg State University, Saint Petersburg, Russia

October 17-16 2016, Thailand

Introduction

Earth's magnetosphere

Introduction

Traditional empirical models:

- Lack of spacecraft data => a few "custom-made" modules representing the principal field sources
- Tsyganenko and Sitnov [2007]: 2D Fourier expansion of equatorial currents

Goal of this work:

Develop a completely new modeling method, free of any *ad hoc* assumptions on the field source geometry

Method description

 Represent the magnetic field as the sum of toroidal and poloidal components:

$$\mathbf{B}(\mathbf{r}) = \nabla \Psi_1 \times \mathbf{r} + \nabla \times (\nabla \Psi_2 \times \mathbf{r})$$

 Ψ_1 , Ψ_2 – scalar generating functions

Radial Basis Function (RBF) expansions:

$$\Psi_{1,2}(\mathbf{r}) = \sum_{i=1}^{N} a_{i_{1,2}} \chi_i(|\mathbf{r} - \mathbf{R_i}|)$$

where $\chi_i = \sqrt{|\mathbf{r} - \mathbf{R_i}|^2 + D^2}$ – radial basis functions (RBF) $\mathbf{R_i}$ – set of RBF nodes covering the modeling domain

Method description

Advantages of the approach:

- Possibility to reconstruct the magnetic field in any specific region with a desired resolution
- Minimum of a priori assumptions about field sources geometry => maximum new information from data

Data

 Geotail, Polar, Cluster, THEMIS, Van Allen Space Probes (RBSP), OMNI (1995-2015)

Equatorial (left) and meridional (right) projections of spacecraft data distribution

Data and placement scheme

Data coverage in projection on GSW meridian (left) and equatorial (right) planes; distribution of RBF nodes lying in corresponding planes.

Data: first experiment with RBF

Subsets for four different phases of a geomagnetic storm

Quite-time conditions

Storm deepening

Equatorial projection

Quite-time conditions

Storm deepening

Meridional projection

Recovery phase

Equatorial projection

Recovery phase

Meridional projection

Results: effects of the Earth's dipole tilt

Meridional projection

Large dipole tilt angles => dramatic asymmetry of MF depression between the southern and northern cusps

Results: distribution of current density J

Equatorial projection

Results: distribution of current density J_y

Meridional projection

RBF model vs traditional TA15 model

Scatterplots of the model vs observed MF GSW components

RBF model vs traditional TA15 model

Scatterplots of the model vs observed MF GSW components

RBF model vs traditional TA15 model

Scatterplots of the model vs observed MF GSW components

Conclusions

- We developed a new method to reconstruct from data the magnetospheric magnetic field without a priory assumptions about its source geometry
- All current systems are reproduced: westward and eastward ring currents, tail current, diamagnetic currents in the cusps, field-aligned currents
- A full-fledged RBF model just devised, providing the best ever figure of merit & correlation with data

Conclusions: future prospects

- The method can be used as a tool to study the magnetospheric currents in selected areas by focusing the RBF grid on a local region of interest
- The method is perfectly suited to consolidate the flow of simultaneous data from constellation-type multispacecraft future missions

Thank you for attention!

More details:

V. A. Andreeva, N. A. Tsyganenko, (2016), J. Geophys. Res., v.121, 2249-2263.

and

http://geo.phys.spbu.ru/~tsyganenko/modeling.html

Test of the RBF-model

- Target configuration TA15 model (Tsyganenko and Andreeva, 2015)
- 2 tests: uniform and real data distribution in respect to RBF nodes
- Storm-time conditions: N = 1.5

$$IMF B_z = -5 nT$$

$$P_{dyn} = 2.5 \text{ nP}$$

Test of the RBF-model

Distribution of $\Delta B = |\mathbf{B}_{\mathrm{total}}| - |\mathbf{B}_{\mathrm{dipole}}|$

Data: selection into subsets

6 hour centered average Sym-H index and its time derivative:

$$\langle \text{SymH} \rangle (t) = \frac{1}{73} \sum_{k=-36}^{36} \left[\text{SymH}(t_k) \cos \frac{\pi k}{144} \right]$$

$$\frac{D\langle \text{SymH}\rangle}{Dt}(t) = \frac{1}{73} \sum_{k=-36}^{36} \left[\text{SymH}(t_k) \sin \frac{\pi k}{72} \right]$$

State	N	⟨Sym-H⟩	$D\langle \text{Sym-H} \rangle/Dt$	$\langle B \rangle$	$Q/\langle B \rangle$
		(nT)	(nT/hour)	(nT)	(%)
Pre-storm Quiet-Time (QT)	41,611	[-20.0, -5.0]	[-0.5, 0.5]	20.8	42
Storm Deepening (SD)	37,031	[-100.0, -40.0]	[-5.0, -2.0]	56.9	34
Main Phase Peak (MP)	35,439	[-100.0, -50.0]	[-1.0, 1.0]	57.5	32
Recovery Phase (RP)	40,187	[-40.0, -20.0]	[2.5, 3.5]	32.7	34