Review paper	Introduction	Observations	Wave heating models	Critical assessment	Conclusions

Coronal heating by MHD waves

Tom Van Doorsselaere

Centre for mathematical Plasma Astrophysics, KU Leuven

14 October 2019

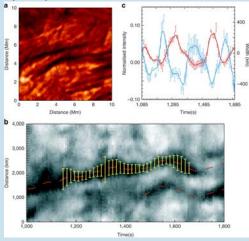
This project has received funding from the ERC (grant agreement No 724326)

Topics review paper

- Introduction
 - Brief historical overview
 - Observational motivation
- Observations
 - Impulsively excited standing waves (brief, discount \rightarrow Terradas & Arregui 2017)
 - Decayless waves
 - Energy estimates
- Models
 - (RMHD) Alfvén wave heating models
 - (KHI/Uni) turbulence models
 - Phase mixing models
- Conclusions & Critical assessment

Elected not to include explicitly in this talk

- Brief historical overview
 - Heating with Alfvén waves (Hollweg, ...)
 - Heating with resonant absorption (Poedts, Goossens, De Groof)
 - Chromospheric heating with slow shocks (Carlsson, ...)
- Observational motivation (1999, 2007)
 - Standing kink waves (Aschwanden, Nakariakov)
 - Lower atmospheric wave motion? (Kukhianidze, De Pontieu)
 - CoMP waves (Tomczyk)
 - Decayless waves (Wang, Anfinogentov, Nistico)


Critical assessme

Conclusions

Energy flux in lower atmosphere

Morton et al. (2012): energy flux in sausage modes in mottles

Energy flux of $11.7 \pm 3.8 kW/m^2$

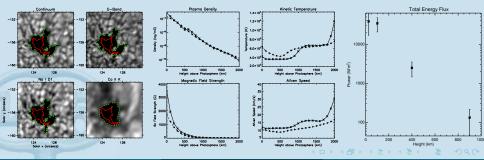
Tom Van Doorsselaere

Observations

Wave heating models

Critical assessmen

Conclusions

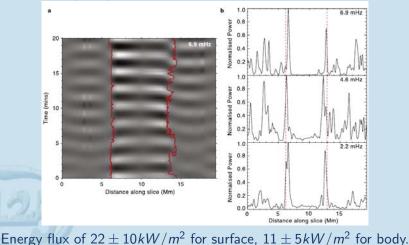


Energy flux in lower atmosphere

Moreels et al. (2015b), Grant et al. (2015) Energy in slow waves:

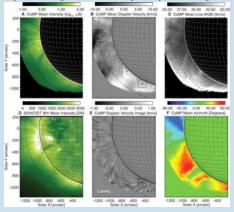
$$F_{\text{Slow}} = \frac{1}{2} f \rho_{0,i} \omega_{\text{T},i}^2 \Xi_z^2 v_{\text{T},i}$$

 $v_{T,i}$ is internal tube speed, Ξ_z is longitudinal displacement amplitude

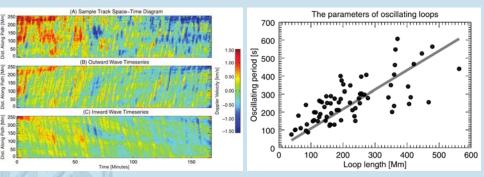

Tom Van Doorsselaere

Wave heating

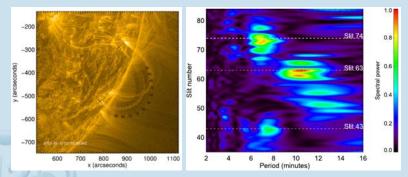
Energy flux in lower atmosphere


Keys et al. (2018): body and surface slow modes in pores.

Tom Van Doorsselaere



Plenty of decayless transverse waves in the solar corona (Tomczyk et al. (2007), Tomczyk & McIntosh (2009), Wang et al. (2012), Nisticò et al. (2013), Anfinogentov et al. (2013), Anfinogentov et al. (2015))


Decayless waves appear as propagating in CoMP (Tomczyk & McIntosh 2009), but standing in AIA (Anfinogentov et al. 2015).

Discuss this point in review? Is it just length scale of loop?

Duckenfield et al. (2018): Detection of overtone in decayless waves.

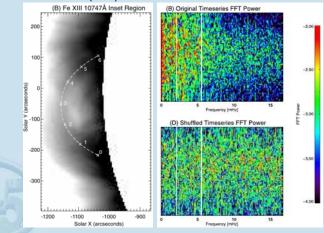
Suggests/confirms that decayless waves are standing.

Iom Van	Doorsselaere
---------	--------------

Introduction

Observations

Wave heating models


ritical assessmen

Conclusions

Decayless transverse waves

De Moortel et al. (2014), Liu et al. (2014): Decayless waves lead to generation of loop top turbulence

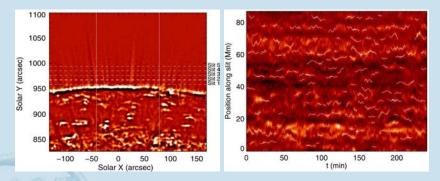
Observational evidence for locations of heating.

Tom Van Doorsselaere

Wave heating

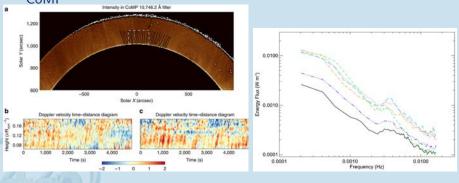
Observations

Wave heating models


Critical assessmen

Conclusions

Decayless transverse waves

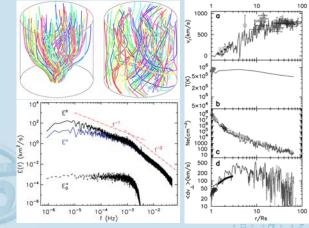

Decayless waves also present in coronal plumes

Thurgood et al. (2014)

Morton et al. (2015, 2016): measure energy flux in plumes with CoMP

Observations

Wave heating models


ritical assessmer

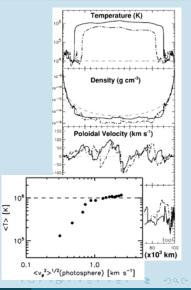
Conclusions

Heating by Alfvén waves

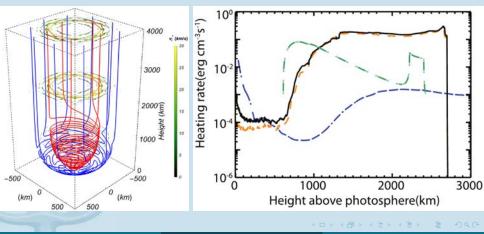
Van Ballegooijen et al. (2011), Verdini et al. (2012), Suzuki & Inutsuka (2005): 1D or R MHD, turbulence from counterpropagating Alfvén waves

Tom Van Doorsselaere

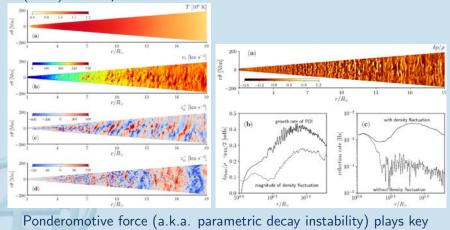
Observations

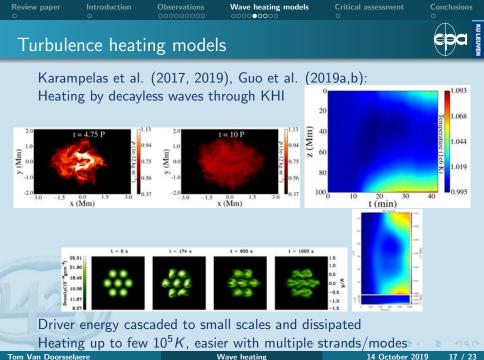

Wave heating models ○●○○○○○○ Critical assessment

Conclusions


Heating by Alfvén waves

- Moriyasu et al. (2004): Heating with Alfvén driver of RMS amplitude of 2km/s
- Antolin et al. (2008, 2010): Dependence of *T* on driver amplitude, development of coronal rain
- Buchlin et al. (2007): Extend model to RMHD with 2D shell model

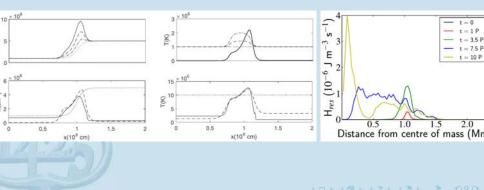

Arber et al. (2016), Soler et al. (2019): Extension of these models to multi-fluid



Heating by Alfvén waves

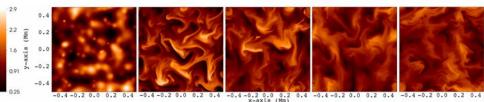
Shoda et al. (2019): Extending models of (e.g.) Rappazzo et al. (2008) to compressible MHD


```
role
Tom Van Doorsselaere
```



Tom Van Doorsselaere

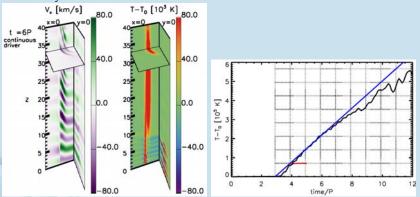
Wave heating

14 October 2019



Cargill et al. (2016): Wave heating in wrong location Karampelas et al. (2018): Heating spread over loop cross-section due to turbulence

Magyar et al. (2017, 2019): Simulated driven waves in plumes \rightarrow medium becomes turbulent, too.


Propagating waves (in one direction) form turbulent medium: uniturbulence (= turbulence from unidirectional waves)

$$(\omega + \omega_{\mathcal{A}}) \vec{z}_{\perp}^{+} = (\omega - \omega_{\mathcal{A}}) \vec{z}_{\perp}^{-}$$

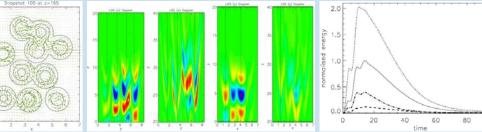
What is the heating?

Pagano et al. (2017): Heating with phase mixing, putting high resistivity

High temperature increase, but only enough to compensate radiation if very high resistivity

Tom Van Doorsselaere

Pagano et al. (2018): Driving with multi-modes


Whole length of loop is heated Heating and cooling

Chucal assessment

All models (beyond 1D) do not have enough heating.

De Moortel & Pascoe (2012): forward model propagating kink modes in bundle of loops

Only a fraction of kinetic energy is observed in (LOS integrated) Doppler shift. Observed energy is underestimated.

Van Doorsselaere et al. (2014): Observed energy flux should be multiplied with filling factor. Lower than thought.

Tom Van Doorsselaere

Wave heating

14 October 2019

22 / 23

- Introduction
 - Brief historical overview
 - Observational motivation
- Observations
 - Impulsively excited standing waves (brief, discount \rightarrow Terradas & Arregui 2017)
 - Decayless waves
 - Energy estimates
- Models
 - (RMHD) Alfvén wave heating models
 - (KHI/Uni) turbulence models
 - Phase mixing models
- Conclusions & Critical assessment